

Solving linear equations and inequalities

Part A: Solve the following equations:

1) $3x - 8 = 13$	2) 4(n + 5) = 8	3) $\frac{x}{3} - 4 = 5$
4) 2(7 – p) = 18	5) 3n + 5 = 4n – 3	6) 10 – 6a = 2a – 2
7) $4(2-x) = 5(2x + 3)$	8) $\frac{20}{n-1} = 4$	9) $\frac{2x-4}{2} + \frac{x-1}{6} = 6$
10) $\frac{2x+1}{3} + \frac{x-1}{6} = \frac{7}{2}$	11) $\frac{3}{x+6} = \frac{2}{x+5}$	12) $\frac{4}{x+2} = \frac{9}{3x+5}$

Part B: Solve the following inequalities:

1) 3x - 8 < 13	2) $6 - \frac{x}{3} > -4$	3) $4(2-x) \ge 5(2x+3)$
4) $\frac{20}{n-1} < 4$	5) $2 < \frac{x}{3} + 1 < 5$	6) 0 < 2(7 − p) ≤ 18

Solutions:

Part A: 1) $3x - 8 = 13 \implies 3x = 13 + 8 = 21 \implies x = 21 + 3 = 7$ 2) 4(n + 5) = 8 [± 4 both sides] $\Rightarrow n + 5 = 2 \implies n = 2 - 5 = -3$ 3) $\frac{x}{3} - 4 = 5 \implies \frac{x}{3} = 5 + 4 = 9 \Rightarrow x = 9 \times 3 = 27$ 4) 2(7 - p) = 18 [± 4 both sides] $\Rightarrow 7 - p = 9 \implies 7 = 9 + p \implies p = 7 - 9 = -2$ 5) 3n + 5 = 4n - 3 [-3n and ± 3 both sides] $\Rightarrow 5 \pm 3 = 4n - 3n \implies 8 = n$ 6) 10 - 6a = 2a - 2 [$\pm 6a$ and ± 2 both sides] $\Rightarrow 10 \pm 2 = 2a + 6a \Rightarrow 12 = 8a \Rightarrow a = \frac{12}{8} = \frac{3}{2}$ 7) $4(2 - x) = 5(2x + 3) \implies 8 - 4x = 10x + 15 \implies 8 - 15 = 10x + 4x \implies -7 = 14x \implies x = -\frac{1}{2}$ 8) $\frac{20}{n-1} = 4$ [x (n - 1) both sides] $\Rightarrow 20 = 4(n - 1) \implies 5 = n - 1 \implies 6 = n$ 9) $\frac{2x - 4}{2} + \frac{x - 1}{6} = 6$ [x 6 all through] $\Rightarrow \frac{6(2x - 4)}{2} + \frac{6(x - 1)}{6} = 6 \times 6 \implies 3(2x - 4) + x - 1 = 36$ $\Rightarrow 6x - 12 + x - 1 = 36 \implies 7x = 36 + 12 + 1 = 49 \implies x = 7$ 10) $\frac{2x + 1}{3} + \frac{x - 1}{6} = \frac{7}{2}$ [x 6 all through] $\Rightarrow \frac{6(2x + 1)}{3} \pm \frac{6(x - 1)}{6} = \frac{6x7}{2} \Rightarrow 2(2x + 1) + x - 1 = 21$ $\Rightarrow 4x + 2 + x - 1 = 21 \implies 5x = 21 + 1 - 2 = 20 \implies x = 4$ 11) $\frac{3}{x + 6} = \frac{2}{x + 5}$ [multiply both sides by both denominators] $\Rightarrow 3(x + 5) = 2(x + 6)$ $\Rightarrow 3x + 15 = 2x + 12 \implies 3x - 2x = 12 - 15 \implies x = -3$ 12) $\frac{4}{x + 2} = \frac{9}{3x + 5} \implies 4(3x + 5) = 9(x + 2) \implies 12x + 20 = 9x + 18 \implies 3x = -2 \implies x = -\frac{2}{3}$

Part B:

1) 3x - 8 < 13 [+8] => 3x < 21 => x < 72) $6 - \frac{x}{3} > -4$ [-6] => $-\frac{x}{3} > -10$ [x-3] => x < 303) $4(2 - x) \ge 5(2x + 3)$ => $8 - 4x \ge 10x + 15$ => $8 - 15 \ge 10x + 4x$ => $-7 \ge 14x$ => $\frac{-7}{14} \ge x$ => $x \le -\frac{1}{2}$ OR $-4x - 10x \ge 15 - 8$ => $-14x \ge 7$ => $x \le \frac{-7}{14}$ => $x \le -\frac{1}{2}$ 4) $\frac{20}{n-1} < 4$ [x (n-1) both sides] => 20 < 4(n-1) => 5 < n-1 => 6 < n => n > 65) $2 < \frac{x}{3} + 1 < 5$ [-1] => $1 < \frac{x}{3} < 4$ [x3] => 3 < x < 126) $0 < 2(7 - p) \le 18$ [$\div 2$] => $0 < 7 - p \le 9$ [-7] => -7 < -p < 2 [x-1] (need to flip BOTH inequalities) => 7 > p > -2 or -2